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Polydispersity in Fluids and Composites: 
Some Theoretical Results I 

G. Stell 2 and P. A. Rikvold 2'3 

The effect of polydispersity in particle size on the structure of a solution or sus- 
pension of hard spheres in a continuum solvent is considered, with emphasis on 
the leading concentration corrections to ideal behavior on the pair distribution 
function and equation of state. Polydispersity in dispersions of randomly cen- 
tered spherical particles and parallel cylindrical particles with randomly placed 
axes is also considered. 
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1. I N T R O D U C T I O N  

We consider here models of random two-phase media in which the medium 
is considered as a suspension of either hard or randomly placed (perfectly 
interpenetrable) D-dimensional spheres, dispersed in a uniform matrix. 
Spatial dimensionality D = 3 is appropriate for a wide range of two-phase 
media including mobile dispersions of droplets, molecules, or 
macromolecular aggregates as well as suspensions that are fixed in the 
matrix over the time scale of a typical observation. D = 2 describes certain 
fiber composites (parallel cylindrical inclusions) and D =  1 is appropriate 
for layered structures. Such a system is said to be polydisperse if some 
physical property R of the inclusion particles is distributed according to a 
(normalized) continuous probability density function f(R). In this work we 
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consider polydispersity of the particle sizes, with R the particle radius or 
diameter. 

The average of any function A(R) is denoted by angular brackets as 

(A(R)) = f? A(R) f(R) dR (1 ) 

The degree of polydispersity of a system of D-dimensional spheres is 
defined as the relative variance of the D-dimensional sphere volume, 

<R2~> 
AD--(RD) 2 1 (2) 

An important length scale associated with f(R) is 

RD = (RD)/(R D-1 ) (3) 

which is proportional to the ratio of average volume to average surface for 
D-dimensional spheres. 

A variety of size distributions f(R) has appeared in the literature. 
Some, such as the Lifshitz Slyozov distribution for late-stage coarsening 
(Ostwald ripening) of binary alloys [1], emerge from the details of a par- 
ticular theory for the process in which the medium is created. Others, such 
as the Shulz [2] and log-normal [3] distributions considered in the 
present work, have a flexible parameterization and have been found useful 
in a wide variety of different physical contexts. 

The Shulz distribution is defined as 

l(~_~_)~+IRZe-(Z+l)R/~ ' f(R) - F(z + 1~ z > -1  (4) 

where F(x) is the gamma function. The mth moment of R is 

(R m) =/~m(z+ 1)-mz -~ f i  (z+i) (5) 
i = o  

so that 

AD =(z+D+I) ' ' ' ( z+2D) 1, RD-Z+DR (6) 
(z+ 1 ) ' "  (z+D) z+ 1 

A s  z ~ ~ ,  f(R) ~ 6(R -/~), the monodisperse limit. 
The log-normal distribution is defined as 

1 [ Eln(R/Ro)] 2] 
f(R) = 2x//~-~R exp 2a 2 _] (7) 
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The mth moment of R is 

( R  m > = R'~ e m2"2/2 (8) 

so that 

A D ---- e D2a2 - -  1 ,  

As o -2 --, 0, f ( R )  ~ cS(R - Ro). 

RD = Ro e(2D - 1)a2/2 (9) 

We refer those interested in the details of the work summarized below 
to our extended report 1-4] as well as the published references we cite. 

2. PAIR DISTRIBUTION F U N C T I O N  FOR POLYDISPERSE 
HARD-SPHERE SYSTEMS 

An important quantity for the description of any many-particle 
system is the pair distribution function g2(rlR~,R2).  Here 
f ( R l ) f ( R 2 )  pZg2(r~2tR1, R2) is the probability density associated with 
finding a particle with property Ra at r~ and another particle with property 
R2 at r2. In the absence of long-range order, statistical independence of 
widely separated particles ensures that g2(rl RI,  R2)--* 1 as r--* oo. In the 
context of g2 in the present work, the parameter R denotes the diameter of 
a spherical particle (D=3) .  Our group's investigation of g2(rlRx, R2) 
began with the work of Blum and Stell I-5, 6], who were the first to obtain 
g2 and the associated scattering function I(k)  analytically in terms of f ( R )  
in the Percus-Yevick approximation. The resulting expressions (in Refs. 5 
and 6 and in the appendix to Ref. 7) can be expected to be quantitatively 
useful over a wide range of sphere concentrations, but they do not yield g2 
in simple form. To supplement those results we include here simple explicit 
expressions for g2 through O(p), obtained in collaboration with Chelliah 
[-8] and Kortipara 1-9] on the basis of general expressions for g2 for 
polydisperse systems obtained by Stell [10], which we give here. 

For two particles of diameters R~ and R2, interacting via a spherically 
symmetric pair potential O(r[R~, R2), the pair distribution function can be 
expressed as a power series in the total number density p [11 ]. Letting 

g2(rlRt ,  R2) = e ~O(rtal.a2) y2(rlR~, R2) (10a) 

we write 

y2(r t R , ,  R2) = [1 + py(1;(rlR,,  R2) + O(p2)] (10b) 

where fl = 1/k~ T is the inverse temperature. The function y2(rl R1, R2) is 
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known as the two-point cavity function. The first-ordertermy(*)(r[R1, R2) 
is defined by 

y(1)(r12[R~,R2)=(f f(rt31R1,R3) f(r23]R2, R3)dr3) (11) 

where r 3 is the position and R3 is the diameter of a third particle, 
ro.= Iri-r j l ,  and the brackets denote an average over R3, as defined in 
Eq. (1). The function f(r•l Ri, Rj) is the Mayer f function, which is defined 
as 

f(%l Ri, Rj) = e --flO(rg] Ri, Rj) - -  1 (12) 

[The notation for the f function is traditional and should not be confused 
with the polydisperse size distribution function f(R) . ]  

For hard particles, g2 simplifies to 

gz(r]R1, R2) = 

R1 + R2 
0 (exactly), r < 

l+py(1)(rlR1, R2)+O(p2), r>/RI+R~ 2 
2 

(13) 

and y(1) reduces to 

y(1)(r121R1,R2)= V1 r12 2 ' 2 (14) 

where Vi(r I R, R') is the intersection volume of two spheres of radii R and 
R', centered a distance r apart. Upon evaluation, Eq. (14) yields 

3Jr 'RI§247 1 'R1  2'2]C2( r 4r  11R2) 

[ ' ] (  ) --3 r(R~+Rz)-(Ra 2+R~)+~rr (R~-R2)z(RI+R2)  C, r -Ra+2Re  

+ I r  3 3 2 + R 3 ) - ~ 6 r ( R 2 - R 2 ) 2 ]  (r R12R2 )}, - ~  r(R, + R 2) + (R 3 Co 

R1 + R2 
r ~ > - -  (15) 

2 
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Fig. 1. The hard-sphere pair distribution function g2(rtRa, R2) through first order 
in density, as given by Eqs. (13) and (15). The particle separation r is given in terms 
of the exclusion distance (R1 + Rz)/2, and the curves all represent the case R1 = R2. 
The dimensionless density t /= ( ~ / 6 ) p ( R  3) is the volume fraction occupied by the 
hard spheres. (1) Monodisperse, ~/= 0.5. (2) Polydisperse log-normal with A 3 = 100, 
;7=0.5. (3) Monodisperse, q=0.2.  (4) Polydisperse log-normal with A3=100, 
q =0.2. 

where 

Cm(X)= Rmf(R) dR ( = ( R  m) for x = 0) (16) 

For the Shulz distribution, Eq.(4), the Cm(X ) c a n  be expressed 
immediately in terms of incomplete F functions, whereas for the log-normal 
distribution, Eq. (7), they can be expressed in terms of probability integrals 
(complementary error functions). Representative plots of gdrlR1, R2) 
through first order in p, versus r, are shown in Fig. 1. Through this order, 
polydispersity is seen to decrease the contact value and increase the range 
of g2. In the next section we consider applications of the polydisperse 
gz(rl R1, R2) to thermodynamics and to scattering theory. 
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3. THERMODYNAMICS AND SCATTERING INTENSITY OF 
POLYDISPERSE HARD-SPHERE SYSTEMS 

From the virial theorem, the equation of state for a polydisperse 
system of particles with only pair interactions ~9(rl R~, R2), in a vacuum, is 
obtained as [10] 

1 t ip  r 3 g2(r]R1,R2) c3•(r]RI'R2) dr (17) 
p Or RI,R2 

where fl= 1/kBT is the inverse temperature, p is the pressure, and the 
angular brackets ( )Rm.R2 denote the double average over the independent 
variables R1 and R2. (For solute particles in a continuum fluid, p 
represents the osmotic pressure, rather than the total pressure.) For a 
system of hard spheres, this reduces to 

--=tiP 1+ ~ P ((RI. +--2 R2`) R~+R2 R~,R2)) (18) 
p 2 R~,R2 

Thus, for hard-sphere systems, only the correlation function at 
r = (R~ + R2)/2 is required in order to obtain the equation of state. From 
Eqs. (13) and (15), we obtain the explicit form, 

2 R~,R2 = l + g p ( R  ) 1 + 3 k l + / ~ 2 3 + O ( p  2) (19) 

Here the scaled diameters are Ri=R/ /k ,  where /~= (R3)/(R z) is the 
length scale defined in Eq. (3). Upon combining Eqs. (18) and (19), we 
obtain the equation of state through second order in density: 

tiP = 1 + pB2 + p2B3 -1- O(p 3) (20a) 
P 

77t [ 1+3  ( R )  (R2).] B2=o(R3)~ (R 3) J (205) 

B3= ~ ( R  3) l + 6 ( R ) ( R 2 ) + 3  (20c) 
( R  3 ) (R3)2  J 

The dimensionless moment ratios that occur in Eq. (20) decrease from 
unity to zero as the degree of polydispersity increases from zero to infinity. 

Salacuse and Stell [12] have shown that one can easily find a 
monodisperse, repulsive effective pair potential ~(r), such. that the 
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corresponding equation of state agrees with Eq. (20) through the level of 
B2. This effective (temperature dependent) potential is given by 

e fl6(r) =--- F ( r )  (21) 

where F(r) is the cumulative probability distribution for the exclusion dis- 
tance (Ri + Rill2 in the polydisperse hard-sphere system, 

fO 2r dF(r) _ 2 f(2r - s) f (s)  ds (22) 
dr 

The general definition of the second virial coefficient in terms of the pair 
potential, 

B2[#~] = 2~ fo ~ 

thus yields 

B [6] = f 
Jo 

r2[1 --e fl6(r)] dr (23) 

r2[1 - F(r)] dr 

) 2~ r3 dr 2~ 3 = - -  = B2 (24) 
3 =--3- R,,Rj 

in agreement with Eqs. (18), (19), and (20). (A similar correspondence does 
not hold for B3.) Observing that F( r )=  (e--~O(rIRI'R2})R1,R~ , we see that 
F(r) more generally provides us with a means of immediately finding an 
effective monodisperse Boltzmann factor and Mayer f function, which we 
can then use in any one of various standard approximation schemes to find 
a monodisperse radial distribution function g(r) that will approximate the 
<g(rtR1, R2))R1.R2 of the polydisperse system. In general ~(r) will be a 
soft potential, and one important implication of the above result is that for 
dilute systems at a fixed temperature, one cannot distinguish structurally 
through g(r) or thermodynamically through B2 between polydispersity and 
softness. 

Several other routes to thermodynamics via pair distribution functions 
are also available. For a polydisperse system with prescribed f(R),  the 
isothermal compressibility KT = (1/p)(Op/@)l r can be written as 

fl/pKw= l - - p  <c(rIR1, R2))R1,R~dr (25a) 

where the Ornstein-Zernike equation relating c(rlR1, R2) to 

h(rlR1, R2)= g2(rlR1, R 2 ) -  1 (25b) 
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takes the form 

h(ra2 IRa, R2) = c(r12 [ R1, R2) + p f c(r131R1, R3) h(r231R2, R3) 

x f(R3) dR3 dr3 (26) 

Expanding h(rIR1, R2) and c(r[Ra, R2), one finds 

h(rlRa, R2)=f( r [Ra ,  Rz )+p[ f ( r lR1 ,  R2)+ 1] y(1)(rlR a, R2)+ O(p 2) 
(27) 

and 

c(rlR1,R2)=f(rlR1, R2)[l +py(1)(rlRa,R2)+O(p2)] (28) 

Through B3, ~p/p obtained by Salacuse and Stell [7] in the Percus- 
Yevick approximation (both from the compressibility relation and from the 
virial expansion) and in the approximation of Mansoori et al. [13] agrees 
with the right-hand side of Eq. (20a). 

The coherent intensity I(k) of radiation (light, X-ray, neutron) 
scattered at a wavevector k is another physical quantity determined by the 
total correlation function h(rl Ra, R2). It is given as 

I(k) = p (F(R) 2 B(kl R) 2) 

+p(F(Ra)F(R2) B(kIR1)B(kIR2)U(klR1, R2))R,,Rz (29) 

Here F(R) is the scattering length for a particle of diameter R [ocR 3 for a 
uniform distribution ~(r[ R) of scattering material inside the particle], 

B(klR)=[f  ~ dr(sinkr)~(rlR)/kl/If ~ dr ~(rlR)r 2] (30) 

is the single-particle form factor, and 

H(kIR1, R2) = p~/f(R1) f(Rz) 4~ fo ~ --~ dr2h(rlRa, R2)(sinkr)/r (31) 

The scattering wavenumber is k=(4n/2)sin(r where 2 is the 
wavelength of the scattered radiation in the medium, and r is the scattering 
angle. I(k) has been obtained in the Percus-Yevick approximation for 
general k by Blum and Stell [5, 6], and by Vrij [14]. Using the results 
given by Eqs. (13) and (15), Korlipara and Stell [15] have obtained a 
density expansion of I(k) through second order in p, which contains only 
simple single integrals over f(R). For the case that f(R) is the Shulz 
distribution, they have expressed these integrals in closed form. 
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4. T R A N S P O R T  A N D  O T H E R  MATERIAL PROPERTIES OF 
P O L Y D I S P E R S E  C O M P O S I T E S  

A number of material properties of random two-phase media are 
mathematically analogous to transport coefficients [16]. Therefore, a study 
of the transport theory of such media can yield, in addition to effective 
thermal, fluid, and electrical conductivities [17, 18], bulk elastic moduli 
[19], dielectric constants [20], and magnetic permeabilities. (A slight 
generalization also yields elastic shear moduli [19].) In this exposition we 
let the term "transport coefficient" apply to any one of these response 
functions. As we shall see, polydispersity, even of an extreme degree, 
appears to have remarkably little effect upon the estimates currently 
available to assess the transport coefficients of a widely used class of 
models--those consisting of randomly dispersed inclusions. It requires con- 
siderable formalism to establish this important result with reasonable 
precision; we shall only sketch the steps here. 

The statistical quantities most directly relevant to the determination of 
effective transport coefficients are the n-point matrix probability functions 
Sn(r~ ..... rn). These are the probabilities that n randomly chosen points all 
lie in one of the two phases, designated the "matrix phase" [21-23]. For a 
uniform system, the one-point matrix function Sl(r) is independent of r, 
and it equals the matrix volume fraction ~. (For porous systems, ~b is often 
called the porosity, a term we use for brevity.) Even for relatively simple 
microstructures (randomly placed or hard spherical or parallel cylindrical 
inclusions in a uniform matrix), the Sn are exactly known only through 
n=  3 [22, 23]. 

Using variational principles it is possible to bound rigorously the effec- 
tive transport coefficient Ke given the transport coefficients Kl and /s in 
the matrix and inclusion phase, respectively, and statistical information 
about the microstructure in the form of matrix probability functions Sn. 
The most restrictive bounds that can be given, based only on knowledge of 
K1, /s ~b, and the condition of isotropy, were found by Hashin and 
Shtrikman (HS) [24]. For/s > K1, their bounds are 

(l+202f121)<~Ke<~K2( l+-2~b'fla2"] (32a) 
K1 \ Y7~-2~-~1 /] 1 -- 01]~12 / 

where 

fl~ = Ki - Kj (32b) 
K, + 2Kj 

~b 1 = ~b and ~2 = 1 - - ~ .  The bounds for K 2 < K 1 are obtained by interchang- 
ing the indices 1 and 2 that denote the two phases in Eq. (32a). None of the 
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quantities occurring in the HS bounds depend on the size or shape dis- 
tributions of the single-phase regions. Therefore, polydispersity has no 
effect on the HS bounds, as long as the porosity ~b remains unchanged. 

In order to improve upon the HS bounds, information about the 
microstructure beyond the level of the volume fractions (~b = $1) must be 
used. De Vera and Strieder (DS) [25] have explicitly considered a model 
of randomly placed inclusion spheres embedded in a matrix of volume frac- 
tion ~b. No higher-order S, appear in the resulting bounds. In most, but not 
all, cases the DS bounds are more restrictive than the HS bounds. The 
additional information about the microstructure concerns only the 
spherical symmetry of the inclusions and does not depend on their size dis- 
tribution [26]. Like the HS bounds, the DS bounds are therefore 
unchanged by polydispersity. 

Brown [27] and Beran [28] have obtained improved variational 
bounds which involve a particular double spatial integral J~(S3) of the 
three-point matrix probability function $3, For ~ -  K2/K~ > 1, the Beran 
bounds are 

{ 1 -  1 +2(bzfl~[1--(J2/2~)]_ 
K1 

~2fl21 [1 § (J2/q~2)(((~q~l § q~2)i(~)] J ~ Ke 

~<K2 {1 +2(~,_fl~[l+(J,/(~l)((~b~+a_(~2)/~)]] (33) 
1-(.hfl~2[1-(2J1/~l)] J 

Here Jz = 1 -  J~ and the microstructural information is contained in the 
integral J1($3). Regardless of the microstructure, J~ satisfies the condition 
[27] 0 ~ J1 ~ 1. The Beran bounds for a < 1 are obtained by interchanging 
the roles of the two phases, as for the HS bounds. The Beran upper bounds 
are always smaller than or equal to the HS upper bound, with equality if 
J i  = 0. Correspondingly, the Beran lower bound is always larger than or 
equal to the HS lower bound, with equality if J2 = 0. 

In a collaboration with Joslin [29] and Korlipara, we have studied 
the effects of polydispersity on a particular model where the randQm two- 
phase medium is considered as a polydisperse suspension of randomly cen- 
tered spheres or parallel cylinders of radius R (phase 2), embedded in a 
uniform matrix (phase 1). The inclusion radii R are distributed according 
to the probability density function f(R). For this model we find that the S, 
are 

S,(ri ..... r,) = exp[ - p (  V,(rl ..... r, I R ) ) ]  (34) 

where p is the number density of inclusions, V,(rl ..... r, lR) is the union 
volume of n spheres (or disks) of radius R, centered at rl ..... r,. The 
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angular brackets denote an average over R, as defined in Eq. (1). The V,, 
and thus the S~, are exactly known through n =  3. The numerical 
evaluation of J l  with the exact $3 is, however, quite time-consuming. 
Excellent numerical results have been obtained by substituting for $3 the 
approximate expression [23] 

~3(x, y, z) = S2(x ) [&(y )  + S2(z)] (35) 
2r 

(This is, in fact, a rigorous lower bound for $3. However, the 
corresponding integral ,71 is not a lower bound on the exact J1.) 

The explicit form of S2(r ) for randomly placed spheres can be written 
as [8, 9] 

S2(r) = (~),  7 = r/k (36) 

is the length scale determined by the ratio of the average inclusion 
volume to the average inclusion surface, as defined in Eq. (3). The 
exponent ~(?) is given by (D = 3) 

1 (R3) 2 ~3 
~ ( f ) = l + ~ ?  16 (R2) 3 

( i3)2  f?~/2 [ ( i ) 3  3(R)2 3//R-~2~ [ ] 
+ ~ o o  --~ ?- -~-~)  r+i-~fa f (R)  dR (37a) 

or, equivalently, 

c~(?) = 2 ((R3)2~ 2 ) 3 fp,~/2 (37b) 

The integral term in Eq. (37a) is of o(~3), and the one in Eq. (37b) vanishes 
at least as fast as a power of ?-1. The effects of polydispersity enter only 
from third order in ?, and the limits c~(0)= 1 and c~(?)~ 2 as ? ~  0% are 
unchanged by the width o f f ( R ) .  A plot of $2 versus ? is shown in Fig. 2 for 
the special case of a log-normal distribution of R. 

The effects of polydispersity on J1 and ~71 are miniscule and would be 
barely detectable in typical journal-sized figures of J1 except at extremely 
high degrees of polydispersity. For D = 3, ,71 is nearly linear in ~b over a 
wide range of polydispersity, given by J1 ~ 0.41 + 0.59~b for A 3 ~< 10 (log- 
normal distribution) to within a percent or so. Here ~71 approximates J1 to 
within this same percentage except when ql < 0.2 (where J1 falls off more 
rapidly than ~7~ as ~b goes to zero). For D = 2 (parallel cylinders) the story 

840/7/4-10 
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is qualitatively the same, with J1 ,.~0.38 + 0.62~b providing a good fit for 
~b > 0.2. As a consequence, the bounds on the effective conductivity and 
elasticity that use J1 are only weakly influenced by the polydispersity. 
These bounds represent the sharpest available estimates of these properties 
(but capture none of the details of behavior one expects at percolation 
points, where the effect of polydispersity remains to be studied). 

If bounds could be obtained for a hard-sphere composite, the effects of 
polydispersity might well be more pronounced and also show up in the 
generalized DS bounds, due to the strong dependence of g2(r) on 
polydispersity. Such results are currently not available. 

A different aspect of transport in polydisperse porous media has 
recently been investigated by Rikvold and Stell in connection with gel size- 
exclusion chromatography [31]. The equilibrium partition constant K(r) is 
the ratio of the porosity toward a hard solute particle of radius r to the 
porosity toward a hard point particle [32]. When the porous gel is 
modeled as a polydisperse randomly placed sphere model, K(r) takes the 
explicit form 

K(r) = ~b m~) (38a) 
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where 

( R ) (  R3 ) ( R 3 )  2 -3 
B ( ? ) = 3 ? + 3  ( R 2 )  2 f 2 + ~ r  (38b) 

for D = 3, and  ? is defined in Eq. (36). Us ing  this po lydisperse  model ,  the 
au thor s  were able  to improve  the agreement  between the theoret ica l  result  
and  the exper imenta l  results  for the porous  silica mate r ia l  Porasi l ,  
p rev ious ly  ob ta ined  by  van  Kreve ld  and  van  den H o e d  1-33]. This  is a 
physical  p rob l em in which a qui te  modes t  degree of po lydispers i ty  yields a 
measu rab le  effect. 
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